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Abstract. Starting from the lowest-order chiral Lagrangian for the interaction of the baryon decuplet with
the octet of pseudoscalar mesons we find an attractive interaction in the ∆K channel with L = 0 and
I = 1, while the interaction is repulsive for I = 2. The attractive interaction leads to a pole in the second
Riemann sheet of the complex plane and manifests itself in a large strength of the ∆K scattering amplitude
close to the ∆K threshold, which is not the case for I = 2. However, we also make a study of uncertainties
in the model and conclude that the existence of this pole depends sensitively upon the input used and can
disappear within reasonable variations of the input parameters. We take advantage to study the stability
of the other poles obtained for the 3

2

−

dynamically generated resonances of the model and conclude that
they are stable and not contingent to reasonable changes in the input of the theory.

PACS. 13.75.Jz Kaon-baryon interactions – 12.39.Fe Chiral Lagrangians – 14.20.-c Baryons (including
antiparticles) – 11.80.Gw Multichannel scattering

1 Introduction

The dynamical generation of baryonic resonances within
a chiral unitary approach has experienced much progress
from early works which generated the Λ(1405) [1, 2]. Fur-
ther studies unveiled other dynamically generated reso-
nances which can be associated to known resonances and
others found new states [3–5]. Recently, it has been shown
that there are actually two octets and a singlet of dy-
namically generated JP = 1/2− resonances, which in-
clude among others two Λ(1405) states, the Λ(1670), the
Σ(1650) and a possible I = 1 state close to the K−p
threshold [3, 6, 7].

What we call dynamically generated resonances are
states which appear in a natural way when studying the
meson-baryon interaction using coupled-channel Bethe-
Salpeter equations (or equivalent unitary schemes) with
a kernel (potential) obtained from the lowest-order chiral
Lagrangian. This subtlety is important since higher-order
Lagrangians sometimes contain information on genuine
resonances, and unitary schemes like the Inverse Ampli-
tude Method (IAM) [8, 9] make them show up clearly,
giving the appearance that they have been generated
dynamically, when in fact they were already hidden in
the higher-order Lagrangian. This is the case of the vec-
tor mesons in the pseudoscalar meson-meson interaction,
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which are accounted for in the L(4) Lagrangian of Gasser
and Leutwyler [10] among other interactions. This is
shown in [11], where, assuming explicit vector meson ex-
change and also scalar meson exchange, the values of the
Li coefficients of [10] can be reproduced. The introduc-
tion of the term genuine resonance, as opposed to dynam-
ically generated, finds its best definition within the context
of the large-Nc counting. In the limit of large Nc there
are series of resonances which appear [11, 12] which we
call genuine resonances. In this limit the loops that char-
acterize the series of the Bethe-Salpeter equation vanish
and the dynamically generated resonances fade away [13].
The genuine resonances cannot be generated dynamically
and then this establishes a distinction between the differ-
ent resonances, the nature of which can be distinguished
when looking at the evolution of the poles as we gradually
make Nc large. This exercise in the meson-meson interac-
tion [13,14] shows that the σ(500), f0(980), a0(980) scalar
resonances are dynamically generated and disappear in
the large-Nc limit, while the ρ, K∗ remain in this limit.
These findings would not alter the philosophy of ref. [11],
making the exchange of vector mesons and scalar mesons
responsible for the Li coefficients, but the choice of the
particles exchanged, in the sense that the scalar mesons
to be used there should not be the lowest-lying ones men-
tioned above, but the nearest ones in energy in the Particle
Data Book (PDB) [15].
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Coming back to the meson-baryon case, this distinc-
tion holds equally and there are some resonances which
are dynamically generated from the meson-baryon inter-
action, solving the Bethe-Salpeter equations in coupled
channels, while there are others (the large majority) which
do not qualify as such and stand, hence, as genuine reso-
nances. From the point of view of constituent quarks, the
latter ones would basically correspond to 3q states, while
the former ones would qualify more like meson-baryon
quasibound states or meson-baryon molecules.

So far, in the light-quark section, the dynamically
generated baryon resonances have been found only in
the interaction of the octet of stable baryons with the
octet of pseudoscalar mesons in L = 0, leading to JP =
1/2− [3, 4, 6, 7] and in the interaction of the decuplet of
baryons with the octet of pseudoscalar mesons in L = 0,
leading to JP = 3/2− states [16].

The chiral unitary approach is purely a theoretical tool
to describe from scratch the interaction of mesons with
baryons. If one uses as input only the contact Weinberg-
Tomozawa interaction between mesons and baryons as we
do, the interaction is fixed and there is only a free param-
eter, the cut-off in the loop, or a subtraction constant in
the dispersion relation integral, which is fitted to a piece of
data. However, this cut-off or subtraction constant should
be of natural size [3]. After that the theory makes predic-
tions for meson-baryon amplitudes and sometimes a pole
appears indicating that one has generated a resonance,
which was not explicitly put into the scheme. These are
the dynamically generated resonances. Most of the reso-
nances listed in the PDB cannot be generated in this way
indicating they are genuine and not dynamically gener-
ated. Trivial examples of genuine resonances would be the
decuplet of baryons to which the ∆(1232) belongs.

With current claims about the Θ+ pentaquark [17] and
the extensive work to try to understand its nature [18,19]
(see refs. [20,21] for a list of related references), one is im-
mediately driven to test whether such a state could qual-
ify as a dynamically generated resonance from the KN
interaction, but with a basically repulsive KN interaction
from the dominant Weinberg-Tomozawa Lagrangian this
possibility is ruled out.

In view of that, the possibility that it could be a bound
state of KπN was soon suggested [22], but detailed calcu-
lations using the same methods and interaction that lead
to dynamically generated mesons and baryons indicate
that it is difficult to bind that system with natural-size
parameters [23].

More recently, some new steps have been done in the
chiral symmetry approach introducing the interaction of
the ∆ and the other members of the baryon decuplet with
the pion and the octet partners. In this sense, in [16] the in-
teraction of the decuplet of 3/2+ baryons with the octet of
pseudoscalar mesons is shown to lead to many states that
have been associated to experimentally well-established
resonances. Also, in ref. [16] a comment was made that
maybe a resonance could be generated with exotic quan-
tum numbers in the 27 representation of SU(3). The pur-
pose of the present paper is to elaborate upon this idea

studying the possible existence of a pole in this exotic
channel as well as the uncertainties and stability of the
results.

In the present work we show that the interaction of the
3/2+ baryon decuplet with the 0− meson octet leads to a
state of positive strangeness, with I = 1 and JP = 3/2−,
hence, an exotic baryon in the sense that it cannot be con-
structed with only three quarks. This would be the first
reported case of a dynamically generated baryon with pos-
itive strangeness. However, we study the stability of the
results with reasonable changes of the input parameters
and realize that the results are unstable and the pole dis-
appears within reasonable assumptions. The situation re-
mains unclear concerning this pole. In view of that we have
also reviewed the situation for the rest of the dynamically
generated 3/2− resonances of the model and we find that
they are stable and their properties are quite independent
of these changes in the input of the theory.

2 Formulation

The lowest-order chiral Lagrangian for the interaction of
the baryon decuplet with the octet of pseudoscalar mesons
is given by [24]

L = −iT̄µD/Tµ , (1)

where Tµabc is the spin decuplet field and Dν the covariant
derivative given by

DνTµabc = ∂νTµabc + (Γ ν)daT
µ
dbc + (Γ ν)dbT

µ
adc + (Γ ν)dcT

µ
abd ,
(2)

where µ is the Lorentz index, a, b, c are the SU(3) indices
and Γ ν is the vector current given by

Γ ν =
1

2
(ξ∂νξ† + ξ†∂νξ) (3)

with
ξ2 = U = ei

√
2Φ/f (4)

where Φ is the ordinary 3×3 matrix of fields for the pseu-
doscalar mesons [10] and f is the pion decay constant,
f = 93 MeV. For the s-wave interaction some simplifica-
tions are possible in the algebra of the Rarita-Schwinger
fields Tµ [25]. We write Tµ as Tuµ where uµ stands for the
Rarita-Schwinger spinor which is given by [25,26]

uµ =
∑

λ,s

C
(

1
1

2

3

2
; λ s s∆

)

eµ(p, λ) u(p, s) (5)

with eµ = (0, ê) in the particle rest frame, ê the spher-
ical representation of the unit vector (λ = 0,±1), C the
Clebsch-Gordan coefficients and u(p, s) the ordinary Dirac
spinors (s = ± 1

2 ). Then eq. (1) involves the Dirac matrix
elements

ū(p′, s′)γν u(p, s) = δν0δss′ +O(|~p |/M) (6)

which for the s-wave interaction can be very accurately
substituted by the nonrelativistic approximation δν0δss′ as
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done in [2] and related works. The remaining combination
of the spinors uµu

µ involves

∑

λ′,s′

∑

λ,s

C
(

1
1

2

3

2
; λ′ s′ s∆

)

× e∗µ(p
′, λ′) C

(

1
1

2

3

2
; λ s s∆

)

× eµ(p, λ) δss′ = −1 +O(|~p |2/M2) . (7)

As one can see, at this point one is already making a
nonrelativistic approximation and consistently with this,
the decuplet states will be treated as ordinary nonrela-
tivistic particles in what follows, concerning the propa-
gators, etc. However, while making these nonrelativistic
assumptions in the Lagrangian we shall keep the exact
relativistic energies in the propagators. This small incon-
sistency is assumed in order to find a compromise between
the simplicity of the formalism and respecting accurately
the thresholds of the reactions and the exact unitarity.

The interaction Lagrangian for the decuplet-meson in-
teraction can then be written in terms of the matrix

(T̄ · T )ad =
∑

b,c

T̄ abcTdbc (8)

as
L = 3iTr{T̄ · T Γ 0T } , (9)

where Γ 0T stands for the transposed matrix of Γ 0, with
Γ ν given, up to two meson fields, by

Γ ν =
1

4f2
(Φ∂νΦ− ∂νΦΦ). (10)

For the identification of the SU(3) components of T
to the physical states we follow ref. [27]:

T 111 = ∆++, T 112 =
1√
3
∆+, T 122 =

1√
3
∆0,

T 222 = ∆−, T 113 =
1√
3
Σ∗+, T 123 =

1√
6
Σ∗0,

T 223 =
1√
3
Σ∗−, T 133 =

1√
3
Ξ∗0,

T 233 =
1√
3
Ξ∗−, T 333 = Ω−.

Hence, for a meson of incoming (outgoing) momenta
k(k′) we obtain the transition amplitudes, as in [2],

Vij = −
1

4f2
Cij(k

0 + k′0). (11)

For strangeness S = 1 and charge Q = 3 there is only
one channel ∆++K+ which has I = 2. For S = 1 and
Q = 2 there are two channels ∆++K0 and ∆+K+ that
we call channels 1 and 2, for which eq. (9) gives C11 =

0, C12 = C21 = −
√
3, C22 = −2. From these one can

extract the transition amplitudes for the I = 2 and I = 1
combinations and we find

V (S = 1, I = 2) =
3

4f2
(k0 + k′0) ;

V (S = 1, I = 1) = − 1

4f2
(k0 + k′0) .

(12)

These results indicate that the interaction in the I = 2
channel is repulsive, while it is attractive in I = 1. There
is a link to the SU(3) representation since we have the
decomposition

8⊗ 10 = 8⊕ 10⊕ 27⊕ 35

and the state with S = 1, I = 1 belongs to the 27 repre-
sentation, while the S = 1, I = 2 belongs to the 35 repre-
sentation. As noted in [16] the interaction is attractive in
the 8, 10 and 27 representations and repulsive in the 35.
Indeed the strength of the interaction in those channels
is proportional to 6, 3, 1 and –3. The attractive potential
in the case of I = 1 and the physical situation are very
similar to those of the K̄N system in I = 0, where the
interaction is also attractive and leads to the generation
of the Λ(1405)-resonance [1–3,5]. The use of V of eq. (11)
as the kernel of the Bethe-Salpeter equation [2], or the
N/D unitary approach of [3] both lead to the scattering
amplitude in the coupled channels

t = (1− V G)−1V , (13)

although in the cases of eq. (12) we have only one channel
for each I state. In eq. (13), V factorizes on shell [2,3] and
G stands for the loop function of the meson and baryon
propagators, the expressions for which are given in [2] for
a cut-off regularization and in [3] for dimensional regular-
ization.

3 Results and discussion

The first thing we have to do is to fix the scale of regu-
larization in the loop functions Gl of eq. (6) of [4]. The
criterion for that is given in [3], where dimensional reg-
ularization is used and Gl depends upon a subtraction
constant, al, that should have “natural size”. Values of
al around −2 were found reasonable in [3] since they are
equivalent to using cut-off regularization with qmax around
700 MeV [3]. In this latter reference, the authors estab-
lished the equivalence between the dimensional regular-
ization and a cut-off method in which the q0 integration
in the loops is done analytically and the cut-off is put in
the three-momentum ~q. Thus, both regularization meth-
ods respect the basic symmetries of the problem. Details
on the two methods and related formulae used can be seen
in ref. [28], where a general study of the dynamically gen-
erated 3/2− resonances is done. Here we study in detail
the case of S = 1, given the repercussion that such an
exotic dynamically generated resonance would have.

We set up the value of al or equivalently qmax by fix-
ing the poles for the resonances which appear more cleanly
in [16,28]. They are one resonance in (I, S) = (0,−3), an-
other one in (I, S) = (1/2,−2) and another one in (I, S) =
(1,−1). The last two appear in [16] around 1800 MeV
and 1600 MeV and they are identified with the Ξ(1820)
and Σ(1670). We obtain the same results as in [16] using
al = −2 or, equivalently, a cut-off qmax = 700 MeV. There
are other peaks of the speed plot in [16], which we also re-
produce, but they appear just at the threshold of some
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Fig. 1. Amplitudes for ∆K → ∆K for I = 1 with f = fπ.

channels and stick there even when the cut-off is changed.
Independently of the meaning of these peaks, they cannot
be used to fix the scale of regularization.

With this subtraction constant we explore the analyti-
cal properties of the amplitude for S = 1, I = 1 in the first
and second Riemann sheets. Firstly, we see that there is no
pole below threshold in the first Riemann sheet as would
be in the case of a bound state. However, if we increase
the cut-off to 1.5 GeV (or, equivalently, al = −2.9 with
µ = 700 MeV) we find a pole below threshold correspond-
ing to a ∆K bound state. But this cut-off or subtraction
constant does not reproduce the position of the resonances
discussed above.

Next we explore the second Riemann sheet. This is
done using dimensional regularization setting the scale µ
equal to qmax = 700 MeV and the subtraction constant a
to −2 and changing q̄l to −q̄l in the analytical formula of
Gl in [4]. This procedure is equivalent to taking

G2nd = G+ 2i
pCM√
s

M

4π
(14)

with the variables on the right-hand side of the equation
evaluated in the first (physical) Riemann sheet. In the
above equation pCM, M and

√
s denote the CM momen-

tum, the ∆ mass and the CM energy, respectively. With
both methods we find a pole around

√
s = 1600 MeV in

the second Riemann sheet. This should have some reper-
cussion on the physical amplitude as we show below.

The situation in the scattering matrix is revealed in
figs. 1 and 2 which show the real and imaginary parts of
the∆K amplitudes for the case of I = 1 and I = 2, respec-
tively. Using the cut-off discussed above we can observe
the differences between I = 1 and I = 2. For the case of
I = 2 the imaginary part follows the ordinary behaviour of
the opening of a threshold, growing smoothly from thresh-
old. The real part is also smooth, showing nevertheless
the cusp at threshold. For the case of I = 1, instead, the
strength of the imaginary part is stuck to threshold as a
reminder of the existing pole in the complex plane, grow-
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Fig. 2. Amplitudes for ∆K → ∆K for I = 2 with f = fπ.

ing very fast with energy close to threshold. The real part
has also a pronounced cusp at threshold, which is also tied
to the same singularity.

We have also done a more realistic calculation taking
into account the width of the ∆ in the intermediate states.
For this we use the cut-off method of regularization with
G given in [4] for stable intermediate particles. The width
of the ∆ is taken into account by adding −iΓ (q2)/2 to
the ∆ energy, El(~q), in the loop function Gl of eq. (6) of
ref. [4] with Γ (q2) given by

Γ (q2) = Γ0
q3
CM

q̄3
CM

Θ
(

√

q2 −MN −mπ

)

, (15)

where qCM and q̄CM denote the momentum of the pion
(or nucleon) in the rest frame of the ∆ corresponding to

invariant masses
√

q2 and M∆, respectively. In the above
equation Γ0 is taken as 120 MeV. The results are also
shown in figs. 1 and 2 and we see that the peaks around
threshold become smoother and some strength is moved
to higher energies. Even then, the strength of the real
and imaginary parts in the I = 1 are much larger than for
I = 2. The modulus squared of the amplitudes shows some
peak behaviour around 1800 MeV in the case of I = 1,
while it is small and has no structure in the case of I = 2.

The situation in figs. 1 and 2 is appealing but be-
fore proceeding further we would like to pay some at-
tention to the stability of the results. So far we have
used a unique meson decay constant, the one of the pion,
f = fπ = 93 MeV. One source of SU(3) breaking in the
problem comes from the renormalization of the meson de-
cay constants which leads to different values of f for the
π, K and the η [10]. We thus repeat the calculations us-
ing fK = 1.22fπ. Yet, when doing this, we would like to
change simultaneously the cut-off such that we still obtain
the poles for the Ξ(1820) and Σ(1670) (which also involve
mainly the K in their coupled channels). We repeat the
calculations with qmax = 800 MeV and the results are
shown in figs. 3 and 4. We see in fig. 3 that the cusp effect
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Fig. 3. Amplitudes for ∆K → ∆K for I = 1 with f = fK .
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Fig. 4. Amplitudes for ∆K → ∆K for I = 2 with f = fK .

is very much diminished with respect to the former set
of parameters and the final cross-section is decreased by
about a factor of three. Compared to the cross-section for
I = 2, shown in fig. 4, the cross-section in I = 1 is still
bigger and grows faster but the effects are certainly less
spectacular than before.

The weak signal in the case of fig. 3 reflects the fact
that in this case we do not find a pole in the second Rie-
mann sheet. The interaction, which is a factor 6 weaker
than in the octet case, as we mentioned above, and barely
supported a pole when using f = fπ, becomes now too
weak due to the f−2 behaviour of the kernel (eq. (11))
and the pole fades away.

In this exploratory investigation we should also men-
tion that if f is decreased by about 25% with respect to fπ
we do find a pole in the first Riemann sheet just below the
∆K threshold indicating a bound state, something also
mentioned in [16]. We have also studied the results mak-
ing small changes in the mass of the K. Results depend

weakly on the K mass but qualitatively we find that in-
creasing the K mass the interaction becomes stronger (see
eq. (11)) and it is easier to find the pole, and vice versa.

We are thus on the border line between having and not
having a pole, or, in other words, the amplitudes are very
sensitive to changes in the input parameters. We cannot
draw strong conclusions in this case since improvements in
the theory could move the balance to one side or the other.

The former comment is in place since a more refined
model should also contain extra channels which have
been omitted here. These channels would be states made
of a vector meson and a stable baryon which would also
couple in the s-wave, the K∗N in the present case. These
extra channels are expected to be relatively unimportant
in the case of the other 3/2− dynamically generated
resonances [16, 28], because the Weinberg-Tomozawa
interaction is six times, or three times larger, for the
octet or decuplet representations, respectively, than the
present one which belongs to the 27 representation. So,
in the present case where we look for the ∆K pole, the
strength of the ∆K interaction is rather weak, and the
effect of the other coupled channels and their interaction
could alter substantially the results. We do not have at
hand the theoretical tools to study the mixing of these
channels and hence it is not possible presently to draw
any other conclusions than the fact that the existence
of the ∆K pole in I = 1 is rather uncertain and a clear
answer should wait till better theoretical tools are at
hand or an experiment settles the question.

The next issue concerns the possible experimental re-
actions that would help in learning about the ∆K dy-
namics. The most obvious experiment should be the K+p
scattering which is already I = 1. The state we are gen-
erating has spin and parity 3/2−, since the kaon has neg-
ative parity and we are working in the s-wave in ∆K.
These quantum numbers can only be reached with L = 2
in the K+p system. Thus, the possible resonance should
be seen in K+p scattering in d-waves. We estimate that
this resonance should have a small effect in K+p scat-
tering in L = 2 based on the experimental fact that
the cross-section for K+p → ∆K is of the order of 1
mb [29], while we find here that the ∆K(I = 1) cross-
section is of the order of 30–80 mb. The small overlap be-
tween K+p and ∆K would drastically reduce the effects
of the S = 1, I = 1 ∆K state in K+p scattering, which
could explain in any case why a resonance has never been
claimed in L = 2 [30]. We have developed a dynamical
model for the K+p → ∆K overlap and find the conclu-
sions drawn before. In view of this, we search for other re-
actions where the existence of the resonance could eventu-
ally be evidenced. Suitable reactions for this would be: 1)
pp→ Λ∆+K+, 2) pp→ Σ−∆++K+, 3) pp→ Σ0∆++K0.
In the first case the ∆+K+ state produced has necessarily
I = 1. In the second case the ∆++K+ state has I = 2.
In the third case the ∆++K0 state has mostly an I = 1
component. A partial-wave analysis of these reactions pin-
ning down the ∆K s-wave contribution would clarify the
underlying dynamics of these systems but is technically
involved. Much simpler and still rather valuable would be
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the information provided by the invariant-mass distribu-
tion of ∆K, and the comparison of the I = 1 and I = 2
cases. Indeed, the mass distribution is given by

dσ

dmI(∆K)
= C|t∆K→∆K |2pCM , (16)

where pCM is the K momentum in the ∆K rest frame.
The mass distribution removing the pCM factor in eq. (16)
could eventually show the broad peak of |t∆K→∆K |2 seen
in fig. 1. Similarly, the ratio of mass distributions in the
cases 3) to 2) or 1) to 2), discussed before, could show
this behaviour. Similarly, with the help of theoretical cal-
culations of these reactions at the tree level, the experi-
ment would provide information for the relative strength
of |t∆K |2 in I = 1 compared to I = 2.

In addition to this test of the mass distribution, one
could measure polarization observables which could in-
dicate the parity or spin of the system formed, analo-
gously to what is proposed to determine these quantities
in [31,32] or [33], respectively.

On a different note, since we are making a test of sta-
bility of the poles we have taken advantage to see what
happens to the poles of the dynamically generated res-
onances in [16, 28]. We have changed f by fK in one
case or by 1.15fπ as in [2] to see how much the results
change. What we see is that the poles do not disappear
but their positions change. Real parts change by about
50 MeV on an average, which is well within uncertainties
from other sources and the lack of additional channels [28].
The widths change in amounts of the order of 20% ex-
cept in cases where the shift in mass opens considerably
the phase space available for the decay. However, there
is one more significant quantity, the coupling of the reso-
nance to the different channels, which is calculated from
the residue at the poles. Partial decay widths can be cal-
culated more accurately using the value of these couplings
and the physical mass of the resonances to be strict with
the phase space, as done in [28]. This exercise served in [28]
to make a proper identification of the poles found with the
physical resonances. What we observe here is that with the
changes in f discussed above, the couplings change by less
than 10% on an average and thus the partial decay widths
calculated in [28] survive the error analysis done here.

This means that the rest of the resonances claimed
in [28] stand on firm ground and they are quite stable un-
der reasonable changes of the input parameters. Although
fine tuning can be expected from the introduction of extra
channels, the basic features deduced in [28] should remain
unchanged.
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